Generalizations of Kaprekar's transformations and Kaprekar-style transformations

Beata BAJORSKA-HARAPIŃSKA, Mariusz PLESZCZYŃSKI, Michał RÓŻAŃSKI, Marcin SZWEDA and Roman WITUŁA

Abstract. In this paper we develop the research we started in [6, 7, 9, 10] on classical *n*-th Kaprekar's transformations, which are some functions defined on *n*-digit numbers (definition is given in the first section). This time we present and discuss some generalizations of classical Kaprekar's transformations which we call symmetric, permutational and general Kaprekar's transformations. We are especially interested in orbits of such transformations, namely we provide their full description for small n and also prove some general properties. We also mention some results of the attempt to introduce Kaprekar-style transformations on symmetric groups. Moreover, inspired by numerical calculations, we pose 4 conjectures.

Keywords: Kaprekar's transformations, permutations.

2010 Mathematics Subject Classification: 11Y50, 11Y55, 11Y60.

1. Introduction

In [5-12, 16, 17] the classical *n*-th Kaprekar's transformations were discussed, namely the transformations

$$T_n: \{0\} \cup \{\alpha: 10^{n-1} \leqslant \alpha < 10^n\} \to \{0\} \cup \{\alpha: 10^{n-1} \leqslant \alpha < 10^n\},\$$

given by the formula

$$T_n(\alpha) := \sum_{k=1}^n (a_k - a_{n-k+1}) 10^{k-1} = a_n a_{n-1} \dots a_1 - a_1 a_2 \dots a_n,$$

for every $\alpha, n \in \mathbb{N}$, $10^{n-1} \leq \alpha < 10^n$, where

R. Wituła, B. Bajorska-Harapińska, E. Hetmaniok, D. Słota, T. Trawiński (eds.), Selected Problems on Experimental Mathematics. Wydawnictwo Politechniki Śląskiej, Gliwice 2017, pp. 233–258.

B. Bajorska-Harapińska, M. Pleszczyński, M. Różański, M. Szweda, R. Wituła Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland, e-mail: {beata.bajorska,mariusz.pleszczynski,michal.rozanski,marcin.szweda,roman.witula}@polsl.pl

$$0 \leqslant a_1 \leqslant a_2 \leqslant \ldots \leqslant a_n \leqslant 9$$

denote all digits in decimal expansion of α and $T_n(0) = 0$.

In this paper we discuss orbits of some Kaprekar-style transformations. Note that a transformation F on a finite set X is a permutation (bijection) if and only if for every $x \in X$ there exists n = n(x) such that $F^n(x) = x$, where F^n denotes the *n*-th iteration of F (that is, the *n*-fold composition). So to establish the nature of a permutation one can examine its orbits, that is sets of the form $\{F^n(x), n \in \mathbb{N}\}$ for every $x \in X$ (i.e. the sets of all iterations of F on a fixed x).

But the above is not true in general – if we consider an arbitrary transformation F of a finite set X then the set of all iterations on every $x \in X$ for each element can be presented graphically in Figure 1(a) below. Therefore instead of examining all iterations of F for every $x \in X$ one can examine only those which can be viewed at Figure 1(a) as a cycle, that is sets of the form $\{x_0 = F^{\nu+1}(x_0), F(x_0), \ldots, F^{\nu}(x_0)\}$. Now each such defined set is called an **orbit of the transformation** F (in [9] it was called a minimal orbit). Moreover, if an orbit contains one element only, that is we have $F(x_0) = x_0$ then x_0 is called a **fixed point of the transformation** F. Note that orbits defined in such a way inherit the key property of orbits of permutations, namely every two orbits either are disjoint or coincide. Some exemplary sets of iterations and orbits of a transformation on a finite set are presented graphically in Figure 1(b) below.¹

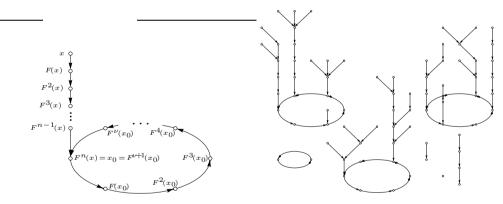


Fig. 1. (a) An example of iterations of F on x;

(b) An example of F acting on some finite set

The paper is organized as follows. In Section 2 we examine orbits of *n*-th symmetric Kaprekar's transformations M_n . Their number and nature depends heavily on a parity of *n*, but not only. For instance, M_{13} -orbits have significantly different nature and there are much more fixed points of M_{15} than of any other M_n with $n \leq 20$. In Section 3 we define a family of permutational transformations and we examine orbits of one of them, denoted by Q_n . Most of Q_n -orbits have a surprising property – the sum of digits of each nontrivial element in every orbit is constant for a fixed *n* (except

¹ A very famous problem, usually referred to as (3x+1)-problem, Collatz problem or Syracuse problem, is also connected with examining orbits – this is the question whether the considered transformation has only one trivial orbit, see e.g. [14] for further details.

for Q_{3n} and Q_7). The examination of Q_n for several initial values of n allowed us, among the others, to discover (and prove) the form of some orbits for 5 infinite chains of Q_n . In Section 4 we define the family of general Kaprekar's transformations and discuss one of them denoted by D_n . Note that for $n = 2^k$, $k \in \mathbb{N}$ these transformations have only the trivial orbit, that is $\{0\}$, which takes place also for so-called Ducci's transformations. The structure of D_n -orbits in general is simpler than for T_n but their cardinalities increase rapidly with n. This behavior is different from the one of T_n as all T_n -orbits for $n \leq 50$ posses at most 7 elements. Finally in Section 5 we make an attempt to introduce Kapkrekar-style transformation in some algebraic structures. As the example we define two transformations in the spirit of Kaprekar on symmetric groups S_n . We also pose 4 conjectures.

2. Symmetric Kaprekar's transformations

In this section we consider a transformation that acts on nonnegative integers having **at most** n digits. However, since the value for each number (except for 0) is an n-digit number, and because of formula (1) below the transformations in question actually generalize the idea of T_n .

So, similarly as for T_n , let $0 \le a_1 \le a_2 \le \ldots \le a_n \le 9$ be the sequence consisting of all digits of α in the decimal expansion of $\alpha < 10^n$ (filled with zeros at the beginning if necessary). For example, for n = 5 and $\alpha = 6103$, we have $a_1 = a_2 = 0$, $a_3 = 1$, $a_4 = 3$ and $a_5 = 6$.

Definition 2.1. Let n be any natural number and for every $\alpha < 10^n$ let $a_1, ..., a_n$ be a nondecreasing sequence of digits in the decimal expansion of length n of α . The n-th symmetric Kaprekar's transformation M_n is a function defined by

$$M_n(\alpha) = \sum_{k=1}^n |a_k - a_{n-k+1}| 10^{k-1}.$$
 (1)

Similarly as for classical Kaprekar's transformations T_n we have

$$M_n(a_1 \dots a_n) = M_n \left(a_{\sigma(1)} a_{\sigma(2)} \dots a_{\sigma(n)} \right)$$

for every permutation σ of $\{1, ..., n\}$.

Thus for example, $M_5(6103) = M_5(00136) = 63036$. Moreover, we have $M_6(6103) = M_6(000136) = 631136$ and $M_7(6103) = M_7(0000136) = 6310136$.

Note that values of M_n have a nice form, namely for every n we have

$$M_{2n+1}(\alpha) = b_1 b_2 \dots b_n 0 b_n \dots b_2 b_1,$$

and

$$M_{2n}(\alpha) = b_1 b_2 \dots b_n b_n \dots b_2 b_1$$

where

$$0 \leqslant b_n \leqslant \ldots \leqslant b_2 \leqslant b_1 \leqslant 9$$

Thus nontrivial M_n -orbits consists only of elements of one of the two forms defined above (in particular, they are *n*-digits numbers for $\alpha \neq 0$).

We shall give the full description of orbits for small n. Also we shall make some general observations and pose 2 conjectures.

2.1. M_n -orbits for odd n

We start our investigations with the full description of orbits for every odd $n \leq 17$. As noted above, the only elements that can appear in M_{2k+1} -orbits are of the form

$$b_1 b_2 \dots b_k 0 b_k \dots b_2 b_1, \qquad 0 \leqslant b_k \leqslant \dots \leqslant b_2 \leqslant b_1 \leqslant 9 \tag{2}$$

Fact 2.2. $M_3(a0a) = a0a$ for $a \in \{0, 1, ..., 9\}$. That means that each of ten M_3 -orbits consist of 1 element only, i.e. a fixed point of M_3 .

Proof. a0a are the only 3-digit numbers of the form (2).

Fact 2.3. M_5 -orbits are the following:

1-element orbits (fixed points): $\{0\}$, $\{21012\}$, $\{42024\}$, $\{63036\}$, $\{84048\}$ 2-element orbits: 25 sets of the form

$$\{ab0ba, a(a-b)0(a-b)a\},\$$

where $0 \leq b \leq a \leq 9$ and ab0ba is not a fixed point.

Proof. Since $M_5(ab0ba) = a(a-b)0(a-b)a$, fixed points satisfy the condition a-b=b whence they are of the form (2b)b0b(2b). Moreover, $M_5^2(ab0ba) = ab0ba$, so all the remaining elements of the form ab0ba constitute 2-element M_5 -orbits as required. \Box

Fact 2.4. M_7 -orbits are the following: 1-element orbits (fixed points): {0}, {3210123}, {6420246}, {9630369}. 3-element orbits: 72 sets of the form

 $\left\{ abc0cba, \ a(a-c)(b-c)0(b-c)(a-c)a, \ a(a-b+c)(a-b)0(a-b)(a-b+c)a \right\}, \ a(a-b+c)a = 0, \ a(a-b+c)a = 0$

where $0 \leq c \leq b \leq a \leq 9$ and abc0cba is not a fixed point.

Proof. We have $M_7(abc0cba) = a(a-c)(b-c)(b-c)(a-c)a$ and $M_7^2(abc0cba) = a(a-b+c)(a-b)0(a-b)(a-b+c)a$ and $M_7^3(abc0cba) = abc0cba$. So fixed points are determined by solutions to the Diophantine system

$$\begin{cases} a-c=b\\ b-c=c, \end{cases} \implies b=2c, a=3c$$

Now, to check whether we have 2-element orbits we solve the system

$$\begin{cases} a-b+c=b\\ a-b=c, \end{cases} \implies b=2c, a=3c,$$

Since the only solutions are fixed points, we get a required contradiction.

Remark 2.5. In particular, 3-element M_7 -orbits of a regular form are

 $\begin{pmatrix} kk(k-1)0(k-1)kk, \ k11011k, \ k(k-1)000(k-1)k \end{pmatrix}, \ 1 \leq k \leq 9, \\ (k(k-1)(k-2)0(k-2)(k-1)k, \ k21012k, \ k(k-1)101(k-1)k \end{pmatrix}, \ 2 \leq k \leq 9, \ k \neq 3, \\ (k(k-3)(k-4)0(k-4)(k-3)k, \ k41014k, \ k(k-1)303(k-1)k \end{pmatrix}, \ 4 \leq k \leq 9, \\ (k(k-2)(k-4)0(k-4)(k-2)k, \ k42024k, \ k(k-2)202(k-2)k), \ 4 \leq k \leq 9, \ k \neq 6.$

Fact 2.6. M₉-orbits are the following: 1-element orbits (fixed points): 22 sets of the form

 $\{(c+2d)(c+d)cd0dc(c+d)(c+2d)\},\$

where $0 \leq d \leq c \leq c + 2d \leq 9$,

3-element orbits: 231 sets of the form

$$\begin{cases} abcd0dcba, & a(a-d)(b-d)(b-c)0(b-c)(b-d)(a-d)a, \\ & a(a-b+c)(a-b+c-d)(a-b)0(a-b)(a-b+c-d)(a-b+c)a \end{cases}$$

where $0 \leq d \leq c \leq b \leq a \leq 9$ and abcd0dcba is not a fixed point.

Proof. We have $M_9(abcd0dcba) = a(a-d)(b-d)(b-c)(b-c)(b-d)(a-d)a$, $M_9^2(abcd0dcba) = a(a-b+c)(a-b+c-d)(a-b)0(a-b)(a-b+c-d)(a-b+c)a$ and $M_9^3(abcd0dcba) = abcd0dcba$. Now, fixed points are solutions to the Diophantine system

$$\begin{cases} a-d=b\\ b-d=c\\ b-c=d \end{cases} \iff \begin{cases} a=c+2d\\ b=c+d \end{cases}$$

whereas 2-element orbits can be determined by solving the system

$$\begin{cases} a-b+c=b\\ a-b+c-d=c\\ a-b=d \end{cases} \iff \begin{cases} a-b=d\\ d+c=b \end{cases} \iff \begin{cases} a=c+2d\\ b=c+d, \end{cases}$$

But the only elements satisfying this system are fixed points, a contradiction. \Box

Notation. Since elements we consider became too long in writing, from now on we shall use a briefer notation. Namely, we shall write all digits explicitly up to the middle 0 which will be bold. The remaining digits, except for the outermost, will be dotted.

Fact 2.7. M_{11} -orbits are the following: 1-element orbits (fixed points): {0}, {543210...5}, 5-element orbits: 400 sets of the form {abcde0...a, a(a-e)(b-e)(b-d)(c-d)0...a, a(a-c+d)(a-c+d-e)(a-b+d-e)(d-e)0...a, a(a-d+e)(a-c+e)(b-c+e)(b-c)0...a,a(a-b+c)(a-b+c-d+e)(a-b+c-d)(a-b)0...a}

where $0 \leq e \leq d \leq c \leq b \leq a \leq 9$ and $abcde \mathbf{0} \dots a$ is not a fixed point.

Proof. The system of Diophantine equations providing fixed points is

$$\begin{cases} a-e=b\\ b-e=c\\ b-d=d\\ c-d=e, \end{cases} \implies d=2e, c=3e, b=4e, a=5e \implies e \in \{0,1\}$$

Similarly as in previous proofs, for k = 2, 3, 4 the only solutions to each equation $M_{11}^k(abcde\mathbf{0}...a) = abcde\mathbf{0}...a$ are fixed points, which gives the statement. \Box

The trend that we could observe in all cases considered so far changes radically for n = 13.

Fact 2.8. M_{13} -orbits are the following:

1-element orbits (fixed points): $\{0\}$, $\{6543210...6\}$, 2-element orbits:

$$\{9764210\ldots 9, 9865420\ldots 9\}, \{3221000\ldots 3, 3322210\ldots 3\}, \{64420000\ldots 6, 6644420\ldots 6\}, \{9663000\ldots 9, 9966630\ldots 9\},$$

3-element orbits: 11 sets of the form

$$\{ (2c-2f)(2c-e-f)c(e+f)ef \mathbf{0} \dots (2c-2f), \\ (2c-2f)(2c-3f)(2c-e-2f)(2c-2e-f)(c-e)(c-e-f)\mathbf{0} \dots (2c-2f), \\ (2c-2f)(c+e-f)(c+e-2f)(c+e-3f)(c-2f)(e-f)\mathbf{0} \dots (2c-2f) \},$$

where $0 \leq f \leq e \leq c \leq 2c - e - f \leq 2(c - f) \leq 9$ and $c - e - f \geq 0$ 6-element orbits: 827 sets of the form

$$\left\{ abcdef \mathbf{0} \dots a, \ a(a-f)(b-f)(b-e)(c-e)(c-d)\mathbf{0} \dots a, \\ a(a-c+d)(a-c+d-f)(a-c+e-f)(b-c+e-f)(e-f)\mathbf{0} \dots a, \\ a(a-e+f)(a-c+d-e+f)(a-b+d-f+f)(a-b+d-e)(d-e)\mathbf{0} \dots a, \\ a(a-d+e)(a-d+f)(b-d+f)(b-c+f)(b-c)\mathbf{0} \dots a \right\}, \\ a(a-c+b)(a-b+c-d+e)(a-b+c-d+e-f)(a-b+c-d)(a-b)\mathbf{0} \dots a \right\}$$

where $0 \leq f \leq e \leq d \leq c \leq b \leq a \leq 9$ and $abcdef \mathbf{0} \dots a$ does not satisfy any of the above conditions.

Proof. The statement follows from straightforward calculations. Let us only note that the only elements satisfying $M_{13}^4(\alpha) = \alpha$ belong either to 1- or 2-element M_{13} -orbits and the only elements satisfying $M_{13}^5(\alpha) = \alpha$ belong to 1-element orbits (i.e. are fixed points).

Remark 2.9. We have verified numerically how many elements generate each type of the orbit (that is for how many β the number $M_{13}^k(\beta)$ belongs to some orbit for some k). So, fixed points are generated by 8370236170 numbers, 2-element orbits are generated by 60489967824 numbers, 3-element orbits are generated by 104611083720 numbers and finally 6-element orbits are generated by the remaining 9826528712286 numbers.

Fact 2.10. M_{15} -orbits are the following:

1-element orbits (fixed points): 44 sets of the form

$$\{(e+f+2g)(e+f+g)(e+f)(e+g)efg\mathbf{0}\dots(e+f+2g)\}$$

where $0 \leq g \leq f \leq e \leq e + f + 2g \leq 9$.

2-element orbits: 342 sets of the form

$$\{ab(b-g)(a-b+e)efg\mathbf{0}\dots a, \ a(a-g)(b-g)(b-f)(b-f-g)(b-e-g)(a-b)\mathbf{0}\dots a\}$$

where $0 \leq g \leq f \leq e \leq a-b+e \leq b-g \leq b \leq a \leq 9$ and $ab(b-g)(a-b+e)efg\mathbf{0} \dots a$ is not a fixed point.

4-element orbits: 2678 sets of the form

$$\begin{cases} abcdefg \mathbf{0} \dots a, \ a(a-g)(b-g)(b-f)(c-f)(c-e)(d-e)\mathbf{0} \dots a, \\ a(a-d+e)(a-d+e-g)(a-c+e-g)(b-c+e-g)(b-c+f-g)(b-c)\mathbf{0} \dots a, \\ a(a-b+c)(a-b+c-d+e)(a-b+c-d+e-f+g)(a-b+c-d+e-f)(a-b+c-d)(a-b)\mathbf{0} \dots a \end{cases}$$

where $0 \leq g \leq f \leq e \leq d \leq c \leq b \leq c \leq 9$ and $abcdefg\mathbf{0}\dots a$ does not satisfy any of the above conditions.

Proof. As before, the statement follows from straightforward calculations. Let us only note that the only elements satisfying the equation $M_{15}^3(\alpha) = \alpha$ are fixed points. \Box

Fact 2.11. M_{17} -orbits are the following: 1-element orbits (fixed points):

 $\{0\} \qquad \{444332100\ldots 4\}, \{888664200\ldots 8\}, \\ \{432211110\ldots 4\}, \{876543210\ldots 8\}, \{864422220\ldots 8\}, \\$

2-element orbits: 32 sets of the form

$$\{ (2d-2g+2h)(d+e-2g+2h)(d+e-2g+h)e(2g-h)gh\mathbf{0}\dots(2d-2g+2h), \\ (2d-2g+2h)(2d-2g+h)(d+e-2g+h)(d+e-3g+2h) \\ (d+e-3g+h)(d+e-4g+2h)(d-2g+h)(d-e)\mathbf{0}\dots(2d-2g+2h) \}$$

where $0 \leq h \leq g \leq 2g - h \leq e \leq d \leq 2d - 2g + 2h \leq 9$, 4-element orbits: 6060 sets of the form

$$\left\{ abcdefgh\mathbf{0}\dots a, \ a(a-h)(b-h)(b-g)(c-g)(c-f)(d-f)(d-e)\mathbf{0}\dots a, \\ a(a-d+e)(a-d+e-h)(a-d+f-h)(b-d+f-h)(b-c+f-h)(b-c+f-g)(b-c)\mathbf{0}\dots a, \\ a(a-b+c)(a-b+c-d+e)(a-b+c-d+e-f+g) \\ (a-b+c-d+e-f+g-h)(a-b+c-d+e-f)(a-b+c-d)(a-b)\mathbf{0}\dots a \right\}.$$

where $0 \le h \le g \le f \le e \le d \le c \le b \le c \le 9$ and abcdefgh0...a does not satisfy any of the above conditions.

Proof. The statement follows from straightforward calculations. Let us only note that the only elements satisfying the equation $M_{17}^3(\alpha) = \alpha$ are fixed points.

Now let us notice some general properties of fixed points.

Fact 2.12.

1. Let $\alpha = a_1 \dots a_n 0 a_n \dots a_1$, where $0 \leq a_n \leq \dots \leq a_1 \leq 9$. Then α is a fixed point of M_{2n+1} if and only if

$$\begin{cases}
 a_1 - a_n = a_2 \\
 a_2 - a_n = a_3 \\
 \vdots \\
 a_k - a_{n-k+1} = a_{2k} \\
 a_{k+1} - a_{n-k+1} = a_{2k+1} \\
 \vdots \\
 a_{\lceil \frac{n}{2} \rceil} - a_{1+\lceil \frac{n}{2} \rceil} = a_n
\end{cases}$$
(3)

where $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$.

2. Elements of the form

$$(nc)((n-1)c)\dots c0c(2c)\dots (nc), \tag{4}$$

where $c \in \{0, 1, ..., 9\}$ and $nc \leq 9$ are fixed points of M_{2n+1} . In particular, for n > 9 the only fixed point of M_{2n+1} of the form (4) is 0. If $5 \leq n \leq 9$ then M_{2n+1} has two fixed points of the form (4), for n = 4 there are three such points, for n = 3 – four such points, for n = 2 – five of them and for n = 1 – ten fixed points of the form (4).

3. If $n = 1 \pmod{3}$ then M_n possesses fixed points which are not of the form (4).

Proof. 1. and 2. are straightforward. So as to 3., observe that if n = 3N + 1, then two equations in the system (3), namely

 $a_{N+1} - a_{n-N+1} = a_{2N+1}$ and $a_{N+1} - a_{n-N} = a_{2N+2}$,

are equivalent, which provides one more parameter in the solution of (3), whence more fixed points of M_n .

Examining the form of orbits we suspect that the following are true:

Conjecture 1. Each number of the form $a_1 \ldots a_n 0 a_n \ldots a_1$, $0 \le a_n \le \ldots \le a_1 \le 9$ belongs to some M_{2n+1} -orbit.

Conjecture 2. For odd *n*, each M_n -orbit has at most $\frac{n-1}{2}$ elements.

2.2. M_n -orbits for even n

In comparison to odd n, the number and form of M_n -orbits for even n is surprisingly measly. But thanks to this it was possible to describe M_n -orbits for every even n.

First let us collect the results obtained by straightforward calculations (numerical) for every even $n \leq 20$.

Notation. Since digits appear in bunches, we shall use the subscript to denote how many consecutive occurrences of a given digit we have. For instance, a number (2b)(2b)bb00bb(2b)(2b) will be denoted by $(2b)_2b_20_2b_2(2b)_2$.

Fact 2.13. For even $n \leq 20$ we have the following M_n -orbits:

- 1. n = 2: 1-element orbit: $\{0\}$.
- 2. n = 4: 1-element orbit: $\{0\}$.
- 3. n = 6: 1-element orbits: $\{a_2 0_2 a_2\}$, where $0 \leq a \leq 9$,
- 4. n = 8: 1-element orbit: $\{0\}$.
- 5. n = 10: 1-element orbits: $\{(2b)_2b_20_2b_2(2b)_2\}$, where $0 \le b \le 4$, 2-element orbits:

$$\{a_2b_20_2b_2a_2, a_2(a-b)_20_2(a-b)_2a_2\}$$

where $0 \leq b \leq a \leq 9$ and $a_2b_20_2b_2a_2$ is not a fixed point.

- 6. n = 12: 1-element orbits $\{a_4 0_4 a_4\}$, where $0 \leq a \leq 9$.
- 7. n = 14: 1-element orbits: $\{(3b)_2(2b)_2b_20_2b_2(2b)_2(3b)_2\}$, where $0 \le b \le 3$, 3-element orbits:

 $\{a_2b_2c_20_2c_2b_2a_2, a_2(a-c)_2(b-c)_20_2(b-c)_2(a-c)_2a_2, a_2(a-c)_2a_2, a$

$$a_2(a-b+c)_2(a-b)_20_2(a-b)_2(a-b+c)_2a_2\},$$

where $0 \leq c \leq b \leq a \leq 9$ and $a_2b_2c_20_2c_2b_2a_2$ is not a fixed point.

- 8. n = 16: 1-element orbit: $\{0\}$.
- 9. n = 18: 1-element orbits: $\{(2d + c)_2(d + c)_2c_2d_20_2d_2c_2(d + c)_2(2d + c)_2\}$, where $0 \leq d \leq c \leq 2d + c \leq 9$, 3-element orbits

 $\{a_2b_2c_2d_20_2d_2c_2b_2a_2,$

$$a_2(a-d)_2(b-d)_2(b-c)_20_2(b-c)_2(b-d)_2(a-d)_2a_2,$$

$$a_{2}(a-b+c)_{2}(a-b+c-d)_{2}(a-b)_{2}0_{2}(a-b)_{2}(a-b+c-d)_{2}(a-b+c)_{2}a_{2}\},$$

where $0 \leq d \leq c \leq b \leq a \leq 9$ and $a_2b_2c_2d_20_2d_2c_2b_2a_2$ is not a fixed point. 10. n = 20: 1-element orbits: { $(2b)_4b_40_4b_4(2b)_4$ }, where $1 \leq b \leq 4$,

2-element orbits:

$${a_4b_40_4b_4a_4, a_4(a-b)_40_4(a-b)_4a_4}$$

where $0 \leq b \leq a \leq 9$ and $a_4b_40_4b_4a_4$ is not a fixed point.

The theorem below provides the full description of M_n -orbits for even n, as every even natural number can be uniquely written in the form $2^k r$, where $k, r \in \mathbb{N}$ and r is odd.

Theorem 2.14.

- 1. For every natural k and each $\alpha < 10^{2^k}$ we have $M_{2^k}^{k+1}(\alpha) = 0$, which means that the only M_{2^k} -orbit is $\{0\}$.
- 2. For every $r \in 2\mathbb{N}+1$ and every natural k each $M_{2^k r}$ -orbit is determined by a unique M_r -orbit. More precisely, a set $\{\beta_1^{(k)}, ..., \beta_s^{(k)}\}$ is an $M_{2^k(2n+1)}$ -orbit if and only if the set $\{\beta_1, ..., \beta_s\}$ is an M_{2n+1} -orbit, where for $\alpha := a_1 ... a_n$ we define $\alpha^{(k)} := (a_1)_{2^k} ... (a_n)_{2^k}$.

Proof. We first show the following: Let $k, r, A \in \mathbb{N}$ be such that r is odd and $A < 10^{2^{k}r}$ with digits $0 \leq a_{2^{k}r} \leq \ldots \leq a_{1} \leq 9$. Then for every natural $m \leq k$ there exist numbers $0 \leq a_{2^{k-m}r}^{(m)} \leq \ldots \leq a_{1}^{(m)} \leq 9$ such that

$$M^{m}(A) = \left(a_{1}^{(m)}\right)_{2^{m-1}} \dots \left(a_{2^{k-m}r}^{(m)}\right)_{2^{m-1}} \left(a_{2^{k-m}r}^{(m)}\right)_{2^{m-1}} \dots \left(a_{1}^{(m)}\right)_{2^{m-1}}$$

We take $a_i^{(1)} := a_i - a_{2^k r - i + 1}$ whence the statement is true for m = 1. For every m < k we take $a_i^{(m+1)} := a_i^{(m)} - a_{2^{k-m}r - i + 1}^{(m)}$, so the result follows by induction.

Now, if r = 1 then $M_{2^k}^k(A) = a_{2^k}$ for some a, whence $M_{2^k}^{k+1}(A) = 0$ which gives 1. For r = 2n + 1 > 1 for m = k we get

$$M_{2^{k}r}^{k}(A) = \left(a_{1}^{(k)}\right)_{2^{k-1}} \dots \left(a_{2n+1}^{(k)}\right)_{2^{k-1}} \left(a_{2n+1}^{(k)}\right)_{2^{k-1}} \dots \left(a_{1}^{(k)}\right)_{2^{k-1}}$$

whence

$$M_{2^{k}r}^{k+1}(A) = \left(a_{1}^{(k+1)}\right)_{2^{k}} \dots \left(a_{n}^{(k+1)}\right)_{2^{k}} 0_{2^{k}} \left(a_{n}^{(k+1)}\right)_{2^{k}} \dots \left(a_{1}^{(k+1)}\right)_{2^{k}}$$

Now, it follows by induction that for every m > k we have

$$M_{2^{k}r}^{m}(A) = \left(a_{1}^{(m)}\right)_{2^{k}} \dots \left(a_{n}^{(m)}\right)_{2^{k}} 0_{2^{k}} \left(a_{n}^{(m)}\right)_{2^{k}} \dots \left(a_{1}^{(m)}\right)_{2^{k}}$$

where for $1 \leq s \leq \lfloor \frac{n}{2} \rfloor$ we have

$$a_{2s}^{(m+1)} = a_s^{(m)} - a_{n-s+1}^{(m)}, \qquad a_{2s+1}^{(m+1)} = a_{s+1}^{(m)} - a_{n-s+1}^{(m)}$$

and $a_{n+1}^{(m+1)} = 0$. That means that the form of $M^m(A)$ does not depend on k but only on r. Moreover, $M_{2^k r}^m$ acts on the bunches of 2^k consecutive digits in exactly the same way as M_r^m act on single digits, which finishes the proof.

Remark 2.15. Let us show on examples how the above theorem works.

Since by Fact 2.2 the operator M_3 has only 1-element orbits of the form $\{a0a\}$ (there are ten of them), for each k there are only ten $M_{3\cdot 2^k}$ -orbits of the form $\{a_{2^k}0_{2^k}a_{2^k}\}$ (see Fact 2.13 for n = 6, 12).

For r = 5 by Fact 2.3 and the above theorem we obtain that $M_{5\cdot 2^k}$ -orbits are the following:

1-element orbits: $\{(2b)_{2^k}b_{2^k}0_{2^k}b_{2^k}(2b)_{2^k}\}, \ 0 \le b \le 4,$ 2-element orbits: $\{a_{2^k}b_{2^k}0_{2^k}b_{2^k}a_{2^k}, \ a_{2^k}(a-b)_{2^k}0_{2^k}(a-b)_{2^k}a_{2^k}\}$ where $0 \le b \le a \le 9$ and $a \ne 2b$ (see Fact 2.13 for n = 10, 20).

3. Permutational Kaprekar's transformations

In this section we are going to consider transformations which generalizes the idea of Kaprekar's transformation in some other direction than symmetric ones, namely

$$T_{(p,n)}(\alpha) := \sum_{k=1}^{n} (a_k - a_{p(k)}) 10^{k-1} = a_n \dots a_2 a_1 - a_{p(n)} \dots a_{p(2)} a_{p(1)}$$

where α is a number with digits $0 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 9$ and p is a permutation in S_n (that is defined on the set $\{1, \ldots, n\}$). Note that the classical Kaprekar's transformation T_n is of that form for $p = \begin{pmatrix} 1 & 2 & \ldots & n-1 & n \\ n & n-1 & \ldots & 2 & 1 \end{pmatrix}$. Moreover, for each permutation p and every number α we have two inequalities:

$$0 \leqslant T_{(p,n)}(\alpha) \leqslant T_n(\alpha).$$

Indeed, $a_n \ldots a_1$ is the greatest number of the form $a_{p(n)} \ldots a_{p(1)}$ and $a_1 \ldots a_n$ is the smallest one.

The rest of this section is devoted to examination of orbits of transformations

$$Q_n(\alpha) := \sum_{k=1}^{n-2} (a_k - a_{n-k+1}) 10^{k-1} + (a_{n-1} - a_1) 10^{n-2} + (a_n - a_2) 10^{n-1}, \quad n \ge 3.$$

Note that $Q_n(\alpha) = T_{(p,n)}(\alpha)$ where $p = \begin{pmatrix} 1 & 2 & \dots & n-2 & n-1 & n \\ n & n-1 & \dots & 3 & 1 & 2 \end{pmatrix}$. Moreover, if for some α we have $a_1 = a_2$, then $Q_n(\alpha) = T_n(\alpha)$. So actually to obtain Q_n we modified T_n the least we could.

Most of the results we present were obtained numerically by straightforward calculations. Note however, that we can prove some general facts as well.

Notation. Since now it is not enough to deal only with digits, we shall also use the symbol \times to denote multiplication. So, as before, AB denotes the number with digits A and B, while $9 \times AB$ denotes the product of 9 and the number AB. On the other hand, to simplify a little, when there is not risk of confusion we shall omit \times , like in (a - b)10.

Fact 3.1. Q_3 -orbits contain only numbers of the form $9 \times BA$ where $0 \leq B \leq A \leq 9$.

Proof. Let $\alpha \in \mathbb{N}$ be a number with digits $0 \leq c \leq b \leq a \leq 9$. Then

$$Q_3(\alpha) = a(10^2 - 1) + b(10 - 10^2) + c(1 - 10) =$$

= 9((a - b)10 + a - c) = 9 × BA.

where A := a - c, B := a - b, whence $0 \le B \le A \le 9$.

Fact 3.2. Q_3 posses only one fixed point, namely 0, and one 3-element orbit $\{135, 216, 405\}$. The sum of digits of each number in this orbit equals 9.

Fact 3.3. Q_4 -orbits contain only numbers of the form

$$9 \times B(A+B-C)A,\tag{5}$$

where $0 \leq C \leq B \leq A \leq A + B - C \leq 9$ or

$$9 \times (B+1)(A+B-C-10)A,$$
(6)

where $0 \leq C \leq B \leq A \leq 9 < A + B - C$.

Proof. Let $\alpha \in \mathbb{N}$ be a number with digits $0 \leq d \leq c \leq b \leq a \leq 9$. Then

$$Q_4(\alpha) = a(10^3 - 1) + b(10^2 - 10) - c(10^3 - 10) - d(10^2 - 1) =$$

= 9(a(10^2 + 10 + 1) + b10 - c(10^2 + 10) - d(10 + 1)) =
= 9((a - c)10^2 + (a - c + b - d)10 + a - d) =
= 9((a - c + 1)10^2 + (a - c + b - d - 10)10 + a - d).

If we set A := a - d, B := a - c, C := a - b then $0 \leq A \leq C \leq B \leq 9$ and a - c + b - d = A + B - C, whence we obtain the statement.

Fact 3.4.

- 1. There are only three Q₄-orbits: {0}, {2187,6543} and {3285,5274}. The sum of digits of each number in nontrivial orbits equals 18.
- 2. By formulas (5) and (6) we have the following:

$$Q_4(a(a-1)(a-2)(a-3)) = 2187$$
, for every $3 \le a \le 9$,

$$\begin{aligned} Q_4(aa(a-b)(a-b)) &= b(b-1)(9-b)(10-b) \quad for \ every \quad 1 \leqslant b \leqslant a \leqslant 9, \\ Q_4^4(aa(a-5)(a-5)) &= 6543, \end{aligned}$$

$$\begin{split} Q^2_4(aa(a-b)(a-b)) &= \\ &= \begin{cases} (2b-10)(2b-11)(20-2b)(19-2b), \ if \ b=6,7,8,9, \\ (10-2b)(9-2b)(2b)(2b-1), & if \ b=1,2,3,4, \end{cases} \end{split}$$

$$= \begin{cases} 2187, & \text{if } b = 4, 6, \\ 8721, & \text{if } b = 1, 9, \\ 6543, & \text{if } b = 2, 8, \\ 4365, & \text{if } b = 3, 7, \end{cases}$$

3. The number of iterations of Q_4 which leads to elements in orbits can be pretty large, for instance the smallest n for which $Q_4^n(7092)$ belongs to some Q_4 -orbit is 11 (and we have $Q_4^{11}(7092) = 2187$).

Fact 3.5. Nontrivial Q_5 -orbits contain only elements of the form

$$(9-d)(b-e-1)9(9-b+d)(e+1),$$
(7)

where $0 \leq e \leq d \leq b \leq 9$ and $b - e \geq 1$. The sum of digits of each number in each orbit equals 27. In particular, the only fixed point of Q_5 is 0.

Proof. Let $\alpha \in \mathbb{N}$ be a number with digits $0 \leq e \leq d \leq c \leq b \leq a \leq 9$. Then

$$Q_5(\alpha) = (a-d)10^4 + (b-e)10^3 - (b-d)10 - (a-e) =$$

= (a-d)10⁴ + (b-e-1)10³ + 9 \cdot 10² + (9-b+d)10 + 10 - a + e.

Now, if b - e = 0, then b = c = d = e and $0 \leq a - b \leq 9$ whence we obtain $Q_5(\alpha) = (a - b)(10^4 - 1)$. By straightforward calculations we obtain that all ten numbers of this form generate Q_5 -orbit {52974,54963}. Both elements are of the form (7) as required. Now, if $b - e \geq 1$, then $a - e \geq 1$ whence formula for $Q_5(\alpha)$ give its digits. Note that 9 is a digit in $Q_5(\alpha)$ for every α , so in particular for elements in Q_5 -orbits there must be a = 9 (as this is the greatest digit) whence we get (7) as required.

Now, let α be a nontrivial fixed point, that is $Q(\alpha) = \alpha$. Then a = 9 and $b - e \ge 1$ whence $e + 1 \ne e$ and $e + 1 \ne b$. Moreover $9 - d \ne d$. Thus there are two possibilities:

1) e + 1 = d. Since 9 - b + d > d then $b - e - 1 = e \iff b = 2e + 1$. Now, the remaining two digits are b, c. If we assume that $9 - d = b \iff 9 - b + d = 2d$ then c = 2d = 2e + 2 > 2e + 1 = b, a contradiction. If we assume that $9 - b + d = b \iff 9 - d = 2b$, then 2b = c, a contradiction. So this case is impossible. 2) e + 1 = c.

Since b - e - 1 < b then it has to be equal either to e or d. In the first case we obtain b = 2e + 1, $9 - b + d = d \iff b = 9 \iff e = 4$ and $9 - d = b = 9 \iff d = 0 < e$, a contradiction. If b - e - 1 = d then $9 - b + d = 9 - c \leq 9 - d$ whence 9 - d = b, $9 - b + d = e \iff e = 2d \iff d = e = 0 \iff b = 1$. But then $9 - d \neq b$ which makes this case impossible and finishes the proof.

Examining the results of numerical calculations of Q_n -orbits for all $n \leq 15$ we have noticed some regularities which gave birth to some general facts. The first theorem below concerns fixed points, the second – some 3-element orbits.

Theorem 3.6.

1.

$$\underbrace{5\dots5}_{k\text{-times}} 4 \underbrace{9\dots9}_{(k+1)\text{-times}} \underbrace{4\dots4}_{k\text{-times}} 5$$

is a fixed point of Q_{3k+3} for every $k \in \mathbb{N}$. 2.

 $66 \underbrace{3 \dots 3}_{k\text{-times}} 08 \underbrace{6 \dots 6}_{k\text{-times}} 52$

is a fixed point of Q_{2k+6} for every $k \in \mathbb{N}_0$.

3.

$$\underbrace{9\ldots9}_{(k+1)\text{-}times} \underbrace{75308642}_{k\text{-}times} \underbrace{0\ldots0}_{k\text{-}times} 1 \quad and \quad 675 \underbrace{3\ldots3}_{k\text{-}times} \underbrace{2087 \underbrace{6\ldots6}_{k\text{-}times} 442}_{k\text{-}times}$$

are fixed points of Q_{2k+10} for every $k \in \mathbb{N}$ and $k \in \mathbb{N}_0$, respectively. 4.

$$\underbrace{9\dots9}_{(k+1)\text{-}times} 750842 \underbrace{0\dots0}_{k\text{-}times} 1$$

is a fixed point of Q_{2k+8} for every $k \in \mathbb{N}$.

Proof. 1. For every $k \in \mathbb{N}$ we have

$$Q_{3k+3}\left(\underbrace{5\dots5}_{k\text{-times}} 4 \underbrace{9\dots9}_{(k+1)\text{-times}} \underbrace{4\dots4}_{k\text{-times}} 5\right) = \underbrace{9\dots9}_{(k+1)\text{-times}} \underbrace{5\dots5}_{(k+1)\text{-times}} \underbrace{4\dots4}_{(k+1)\text{-times}} \\ - \underbrace{4\dots4}_{(k+1)\text{-times}} \underbrace{5\dots5}_{(k+1)\text{-times}} \underbrace{9\dots9}_{(k+1)\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{(k+1)\text{-times}} \underbrace{4\dots45}_{k\text{-times}} \\ - \underbrace{5\dots5}_{k\text{-times}} 4 \underbrace{9\dots9}_{(k+1)\text{-times}} \underbrace{4\dots45}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{k\text{-times}} \underbrace{4\dots45}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{4\dots45}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{4\dots45}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{9\dots9}_{k\text{-times}} \underbrace{5\dots5}_{k\text{-times}} \underbrace{$$

2. For every $k \in \mathbb{N}_0$ we have

$$Q_{2k+6}\left(66\underbrace{3\dots3}_{k-times}08\underbrace{6\dots6}_{k-times}52\right) = 86\underbrace{6\dots6}_{k-times}65\underbrace{3\dots3}_{k-times}20$$
$$- 20\underbrace{3\dots3}_{k-times}56\underbrace{6\dots6}_{k-times}68$$
$$\underbrace{66\underbrace{3\dots3}_{k-times}08\underbrace{6\dots6}_{k-times}52}_{k-times}$$

3. For every $k \in \mathbb{N}$ we have

$$Q_{2k+10}\left(\underbrace{9\dots9}_{(k+1)\text{-}times}75308642\underbrace{0\dots0}_{k\text{-}times}1\right) = \underbrace{9\dots9}_{(k+1)\text{-}times}87654321\underbrace{0\dots0}_{(k+1)\text{-}times}$$
$$-\underbrace{0\dots0}_{(k+1)\text{-}times}12345678\underbrace{9\dots9}_{(k+1)\text{-}times}$$
$$\underbrace{9\dots9}_{(k+1)\text{-}times}75308642\underbrace{0\dots0}_{k\text{-}times}1$$

For every $k \in \mathbb{N}_0$ we have

$$Q_{2k+10}\left(675\underbrace{3\dots3}_{k\text{-times}}2087\underbrace{6\dots6}_{k\text{-times}}442\right) = 877\underbrace{6\dots6}_{k\text{-times}}6544\underbrace{3\dots3}_{k\text{-times}}220$$
$$-\underbrace{202\underbrace{3\dots3}_{k\text{-times}}4456\underbrace{6\dots6}_{k\text{-times}}778}_{675\underbrace{3\dots3}_{k\text{-times}}2087\underbrace{6\dots6}_{k\text{-times}}442}$$

4. For every $k \in \mathbb{N}$ we have

$$Q_{2k+8}\left(\underbrace{9\dots9}_{(k+1)-times}750842\underbrace{0\dots0}_{k-times}1\right) = \underbrace{9\dots9}_{(k+1)-times}875421\underbrace{0\dots0}_{(k+1)-times} - \underbrace{\underbrace{0\dots0}_{(k+1)-times}124578\underbrace{9\dots9}_{(k+1)-times}}_{\underbrace{9\dots9}_{(k+1)-times}750842\underbrace{0\dots0}_{k-times}1$$

which finishes the proof.

Theorem 3.7.

1. Q_{2k+8} , $k \in \mathbb{N}_0$ possesses the following 3-element orbit:

$$\left\{56\underbrace{3\ldots3}_{k\text{-times}}2087\underbrace{6\ldots6}_{k\text{-times}}44, \quad 67\underbrace{3\ldots3}_{k\text{-times}}2087\underbrace{6\ldots6}_{k\text{-times}}42, \quad 675\underbrace{3\ldots3}_{k\text{-times}}17\underbrace{6\ldots6}_{k\text{-times}}442\right\}$$

2. $Q_{2k+10}, k \in \mathbb{N}_0$ possesses the following 3-element orbit:

$$\left\{ \underbrace{64\ 3\ldots 3\ 1088\ 6\ldots 6\ 54,\ 78\ 3\ldots 3}_{(k+1)-times\ (k+1)-times\ (k+1)-times\$$

Proof. 1. For every $k \in \mathbb{N}_0$ we have

$$Q_{2k+8}\left(56\underbrace{3\dots3}_{k-times}2087\underbrace{6\dots6}_{k-times}44\right) = 87\underbrace{6\dots6}_{k-times}6544\underbrace{3\dots3}_{k-times}20$$
$$-20\underbrace{3\dots3}_{k-times}4456\underbrace{6\dots6}_{k-times}78$$
$$\overline{67\underbrace{3\dots3}_{k-times}2087\underbrace{6\dots6}_{k-times}42},$$

$$Q_{2k+8}\left(67\underbrace{3\ldots3}_{k-times}2087\underbrace{6\ldots6}_{k-times}42\right) = 877\underbrace{6\ldots6}_{k-times}64\underbrace{3\ldots3}_{k-times}220$$

$$-202\underbrace{3\ldots3}_{k-times}46\underbrace{6\ldots6}_{k-times}778$$

$$-202\underbrace{3\ldots3}_{k-times}46\underbrace{6\ldots6}_{k-times}778$$

$$-575\underbrace{3\ldots3}_{k-times}17\underbrace{6\ldots6}_{k-times}442\right) = 77\underbrace{6\ldots6}_{k-times}6544\underbrace{3\ldots3}_{k-times}21$$

$$-21\underbrace{3\ldots3}_{k-times}4456\underbrace{6\ldots6}_{k-times}77$$

$$-21\underbrace{3\ldots3}_{k-times}4456\underbrace{6\ldots6}_{k-times}77$$

$$-56\underbrace{3\ldots3}_{k-times}2087\underbrace{6\ldots6}_{k-times}444,$$

2. For every $k \in \mathbb{N}_0$ we have

$$Q_{2k+10}\left(64\underbrace{3\dots3}_{(k+1)-times}1088\underbrace{6\dots6}_{(k+1)-times}54\right) = 88\underbrace{6\dots6}_{(k+1)-times}6544\underbrace{3\dots3}_{(k+1)-times}100$$

$$-10\underbrace{3\dots3}_{(k+1)-times}4456\underbrace{6\dots6}_{(k+1)-times}88$$

$$-10\underbrace{3\dots3}_{(k+1)-times}4456\underbrace{6\dots6}_{(k+1)-times}88$$

$$-10\underbrace{3\dots3}_{(k+1)-times}2087\underbrace{6\dots6}_{(k+1)-times}22\right) = 8877\underbrace{6\dots6}_{(k+1)-times}\underbrace{3\dots3}_{(k+1)-times}2220$$

$$-2022\underbrace{3\dots3}_{(k+1)-times}\underbrace{6\dots6}_{(k+1)-times}7788$$

$$-2022\underbrace{3\dots3}_{k-times}\underbrace{6\dots6}_{(k+1)-times}4432,$$

$$Q_{2k+10}\left(6855\underbrace{3\dots3}_{k-times}2\underbrace{6\dots6}_{(k+1)-times}4432\right) = 86\underbrace{6\dots6}_{(k+1)-times}\underbrace{5544}_{(k+1)-times}\underbrace{3\dots3}_{(k+1)-times}22$$

$$-22\underbrace{3\dots3}_{(k+1)-times}\underbrace{4432}_{(k+1)-times}\underbrace{64\underbrace{3\dots3}_{(k+1)-times}1088\underbrace{6\dots6}_{(k+1)-times}54,$$

$$-22\underbrace{3\dots3}_{(k+1)-times}\underbrace{1088}_{(k+1)-times}\underbrace{6.\dots6}_{(k+1)-times}54,$$

In the table below we collect all the numerical results we obtained. Here s denotes the sum of digits of every element in the given orbit, d stands for the length of an orbit and m gives the number of numbers that generate the given orbit.

Q_n -orbits	s	d	m
n = 2			
$\{0\}$	0	1	100
n = 3			
$\{0\}$	0	1	28
$\{135,216,405\}$	9	3	972
n = 4			
$\{0\}$	0	1	10
$\{3285, 5274\}$	18	2	1908
$\{2187,6543\}$	18	2	8082
n = 5			
{0}	0	1	10
$\{52974, 54936\}$	27	2	99990
n = 6			
$\{0\}$	0	1	10
$\{660852\}$	36	1	10080
$\{549945\}$	36	1	204102
$\{350874, 570852, 669942, 569943,$	$27,\!36$	8	785808
$560844, 460872, 671742, 561744\}$	27,30	0	100000
n = 7			
{0}	0	1	10
${5729643,6519753,6609852,7809831,}$	26 15	8	99999990
$8849421,\!7739532,\!6539553,\!6299964\}$	36, 45	0	9999990
n = 8			
$\{0\}$	0	1	10
$\{66308652\}$	36	1	215040
$\{56208744, 67208742, 67517442\}$	36	3	99784950

Q_n -orbits	s	d	m
n = 9		I	1
{0}	0	1	10
{554999445}	54	1	34440
{763197642,764197542}	45	2	42954837
{752197743,764296542}	45	2	783607101
$\{652098753, 784098531, 885296421, 776197332, 764395542\}$	45	5	173403612
n = 10			
$\{0\}$	0	1	10
{6633086652}	45	1	2520000
{9975084201}	45	1	41045760
$\{6752087442\}$	45	1	50793120
$\{6431088654, 7832087622, 6855264432\}$	45	3	1581982950
$\{5632087644, 6732087642, 6753176442\}$	45	3	8323658160
n = 11			
{0}	0	1	10
$\{76421977542, 76531976442\}$	54	2	1152074022
$\{77420987532, 78542965431\}$	54	2	20024739790
$\{77530986432, 78441975531, 87430986522,$	54	5	78823186178
78641975331,87441975522}	94	9	10023100110
n = 12			
$\{0\}$	0	1	10
$\{555499994445\}$	72	1	697950
$\{663330866652\}$	54	1	23950080
{999750842001}	54	1	556839360
{997530864201}	54	1	6771885120
$\{997510884201, 997750842201, 997550844201\}$	54	3	10397350260
$\{ 643110888654, 787320876222, 685552644432 \}$	54	3	14282581632
$\{654310886544, 783210887622, 786552644322\}$	54	3	49942260696
$\{ 643310886654, 783320876622, 685532664432 \}$	54	3	139166335086
$\{563320876644, 673320876642, 675331766442\}$	54	3	775875839646
n = 13			
{0}	0	1	10
$\{7742109887532, 8865429654321,$	63	4	510013982062
7763209876332,7854429655431}	00	ľ	010010002002
$\{7865309864331, 8854319765421, 8764209875322,$	63	5	9489986017928
$7865419754331,8744209875522\}$	00		0100000011020

Q_n -orbits	s	d	m	
n = 14				
$\{0\}$	0	1	10	
{66333308666652}	63	1	197765568	
{99997508420001}	63	1	6034588560	
{67533208766442}	63	1	87185978880	
{99975308642001}	63	1	126071225280	
{99753308664201}	63	1	516356961120	
$\{99975108842001, 99977508422001, 99975508442001\}$	63	3	181449067800	
$\{64311108888654, 78773208762222, 68555526444432\}$	63	3	270059528648	
$\{99751108884201,99777508422201,99755508444201\}$	63	3	420203255472	
$\{99755108844201,99775108842201,99775508442201\}$	63	3	829988923764	
$\{64331108886654, 78733208766222, 68555326644432\}$	63	3	1186659773208	
$\{65431108886544, 78732108876222, 78655526444322\}$	63	3	1935985009868	
$\{65543108865444, 78321108887622, 78765526443222\}$	63	3	2182686460318	
$\{99753108864201,99775308642201,99755308644201\}$	63	3	2316236914992	
$\{65433108866544, 78332108876622, 78655326644322\}$	63	3	6805012345352	
$\{64333108866654, 78333208766622, 68553326664432\}$	63	3	10677174402826	
$\{56333208766644, 67333208766642, 67533317666442\}$	63	3	72458697798334	
n = 15				
$\{0\}$	0	1	10	
$\{555549999944445\}$	90	1	15165150	
$\{776321098876332, 886544296554321\}$	72	2	9882019583415	
$\{775432098765432, 785442098755431, 886431098865321,$	72	E	102564269404575	
887653197643221,876543197654322}	12	9	102004209404070	
$\{764432098765542, 785422098775431, 886543098654321,$				
886532098764321, 886643197653321,	72	7	887553695846850	
$876433197665322, 775433197665432\}$				

In the table above some interesting properties and anomalies can be observed:

- 1. Trivial fixed points for Q_n are always generated by 10 numbers except for n = 2, 3.
- 2. Transformations with only trivial fixed points are Q_3 , Q_4 , Q_5 , Q_7 , Q_{11} and Q_{13} .
- 3. Q_3, Q_5 and Q_7 are the only transformations possessing only two orbits.
- 4. The sum of digits of elements in each orbit is constant except for one orbit for Q_6 (for which it equals 27 or 36) and one for Q_7 (equals 36 or 45).
- 5. There is also stronger general property namely the sum of digits of elements in all nontrivial orbits is also constant except for Q_{3n} , n = 2, 3, 4, 5 and Q_7 .

4. General Kaprekar's transformations

In previous sections we have generalized the idea of the classical Kaprekar's transformation using absolute value or allowing the second index to vary according to some permutation. Now we shall consider transformations that generalizes the idea of both previously mentioned ones.

Namely, again we shall consider numbers with at most n digits (filled with 0 at the beginning if necessary), but now in the original order.

Definition 4.1. Let α be a number with at most n digits (filled with 0 at the beginning if necessary), that is

$$\alpha = d_1 d_2 \dots d_n, \ 0 \leqslant d_i \leqslant 9$$

and let σ, π be permutations of $\{1, \ldots, n\}$. Then the *n*-th (σ, π) -general Kaprekar's transformation $d_n^{(\sigma,\pi)}$ is the function defined in the following way

$$d_n^{(\sigma,\pi)}(\alpha) := \sum_{k=1}^n |d_{\sigma(k)} - d_{\pi(k)}| 10^{n-k-1},$$

In the sequel we shall consider orbits for a special type of transformations of this kind, namely for σ being the identity permutation and $\pi_n = \begin{pmatrix} 1 & 2 & \dots & n-2 & n-1 & n \\ 2 & 3 & \dots & n-1 & n & 1 \end{pmatrix}$, i.e. π_n being the cycle $(1, 2, \ldots, n)$, that is

$$D_n := d_n^{(id,\pi_n)} = \sum_{k=1}^{n-1} |d_k - d_{k+1}| 10^{n-k} + |d_n - d_1|$$
(8)

The permutations we consider were not chosen by accident. Note that transformations D_n are actually special cases of so-called Ducci's transformation (see [1-4, 15]) for more details on Ducci's transformations).

Theorem 4.2.

- 1. The only fixed point of D_n , $n \in \mathbb{N}$ is θ .
- 2. Transformations D_{2^n} , $n \in \mathbb{N}$ have only one orbit the trivial one.

Proof. 1. Let $\alpha = d_1 d_2 \dots d_n$, $0 \leq d_i \leq 9$ and let $D_n(\alpha) = \alpha$. Then

$$\begin{cases} |d_k - d_{k+1}| = d_k, & k \in \{1, 2, \dots, n-1\} \\ |d_n - d_1| = d_n. \end{cases}$$
(9)

There are two possibilities:

- a. There exists $m \in \{1, \ldots, n-1\}$ such that $d_m \ge d_{m+1}$. Then from (9) we get $d_m - d_{m+1} = d_m$ whence $d_{m+1} = 0$ and hence recursively for every $k \in \{1, \ldots, n\}$ we have $d_k = 0$.
- b. For every $k \in \{1, \ldots, n-1\}$ we have $d_k < d_{k+1}$. Then $d_1 < d_n$ and from the last equation in (9) we get $d_1 = 0$, which recursively implies that $d_k = 0$ for every $k \in \{1, 2, \ldots, n\}.$

So the only fixed point of D_n is 0.

2. It follows directly from the following theorem proven in [13]: Theorem: Let T be the transformation $T: \mathbb{Z}^{2^n} \to \mathbb{Z}^{2^n}$ defined in the following way

$$\mathbb{Z}^{2^{n}} \ni (a_{1}, a_{2}, \dots, a_{2^{n}}) \mapsto (|a_{1} - a_{2}|, |a_{2} - a_{3}|, \dots, |a_{k} - a_{k+1}|, \dots, |a_{2^{n}} - a_{1}|)$$

If $a := (a_1, a_2, \ldots, a_{2^n}) \in \mathbb{Z}^{2^n}$ is fixed then there exists $k := k(a) \in \mathbb{N}$ such that $T^k(a)$ is the zero vector. In the table below we collect the results on nontrivial D_n -orbits for $n \leq 10$ obtained numerically, where k stands for any nonzero digit.

D_n -orbits	Length
n = 3	Length
	1
$\begin{cases} 0 \\ b \\$	3
$\{kk, k0k, kk0\}$	3
n = 4	
{0}	1
n = 5	
{0}	1
$\{kk, k0k, kkkk, k000k, k00k0, k0kkk, kk000, k00k,$	15
kk0kk, kk00, k0k00, kkk0k, kk0, k0k0, kkkk0	15
n = 6	
{0}	1
$\{kk0kk, k0kk0k, kk0kk0\}$	3
$\{k0k, kkkk, k000k, kk00kk, k0k00, kkkk00\}$	6
$\{k0k0, kkkk0, k000k0, k00kkk, k0k000, kkk00k\}$	6
n = 7	
{0}	1
$\{kk, k0k, kkkk, k000k, kk00kk, k0k0k0k, kkkkkk0\}$	7
{ <i>kk</i> 0, <i>k</i> 0 <i>k</i> 0, <i>kkkk</i> 0, <i>k</i> 000 <i>k</i> 0, <i>kk</i> 00 <i>kk</i> 0, <i>k</i> 0 <i>k</i> 0 <i>kk</i> , <i>kkkkk</i> 0 <i>k</i> }	7
{kk00, k0k00, kkkk00, k000k00, k00kk0k, k0k0kk0, kkkk0kk}	7
{k00k, kk0kk, k0kk0k, kkk0kkk, kk000, k0k000, kkkk000}	7
{ <i>kkk</i> 0 <i>k</i> , <i>k</i> 00 <i>kkk</i> , <i>kk</i> 0 <i>k</i> 00 <i>k</i> , <i>kkk</i> 0 <i>k</i> 0, <i>k</i> 00 <i>kkk</i> 0, <i>k</i> 0 <i>k</i> 00 <i>kk</i> , <i>kkk</i> 0 <i>k</i> 00}	7
$\{k0kkk, kkk00k, k00k0kk, k0kkk00, kk00k0k, k0kkk0, kkk00k0\}$	7
$\{k00k0, kk0kk0, k0kk0k0, kk0kkkk, kk0000, k0k0000, kkk000k\}$	7
{k0000k, kk000kk, k00k00, kk0kk00, kk0k0k, k0kkkkk, kk00000}	7
$\{kkkkkk, k00000k, k0000k0, k000kkk, k00k000, k0kk00k, kk0k0k0\}$	7
n=8	
{0}	1

D_n -orbits	Length
n = 9	
{0}	1
$\{kk0kk0kk,k0kk0kk0k,kk0kk0kk0\}$	3
$\{kk,k0k,kkkk,k000k,kk00kk,k0k0k0k,kkkkkkk$	
k000000k0, k00000kkk, k0000k000, k000kk00k, k00k0k0k0, k0kkkkkkk,	
kk0000000, k000000k, kk00000kk, k0000k00, kk0000kk00, k00k0k0k,	
kk0kkkkk, kk000000, k0k000000, kkk00000k, k0000k0, kk0000k0, kk000kk0,	
k0k00k0k0, kkk0kkkkk, kk00000, k0k00000, kkkk00000, k0000k, kk000kk, kk00kk, k	63
k0k00k0k, kkkk0kkkk, kk0000, k0k0000, kkkk0000, k000k000	
k0k0k00k0, kkkkk0kkk, kk000, k0k000, kkkk000, k000k000	
k0k0k00k, kkkkk0kk, kk00, k0k00, kkkk00, k000k00, kk00kk00	
kkkkkk0k, kk0, k0k0, kkkk0, k000k0, kk00kk0, k0k0k0k0	
$\{k00k, kk0kk, k0kk0k, kkk0kkk, k00kk00k, kk0k0k0kk, kkkkkk00,$	
k00000k00, k0000kk0k, k000k0kk0, k00kkk0kk, k0k00kk00, kkk0k0kk,	
kkkkkk0, k00000k0, kk00000kk0, k000k0kk, kk00kkk0k, k0k00kk0,	
kkkk0k0k0, kkkkkk, k00000k, kk0000kk, k0k000k0k, kkk00kkk0, k0k00kk,	
kkkk0k0k, k000kkkkk, k00k00000, k0kk0000k, kk0k0000k0, kkk000kkk,	63
k00k0k00k, k0kkkk0k0, kk000kkkk, k00k0000, kk0kk0000, kk0k0000k,	00
k0kkk00kk, kk00k0k00, k0kkkk0k, kkk000kkk, k00k000, kk0kk000,	
k0kk0k000, kk0kkk00k, kk00k0k0, k0k0kkkk0, kkkk000kk, k00k00, kk0kk00,	
k0kk0k00, kkk0kkk00, kk00k0k, k0k0kkkk, kkkkk000k, k00k0, kk0kk0,	
$k0kk0k0, kkk0kkk0, k00kk00k0, k0k0k0kkk, kkkkkk000\}$	
$\{kkk0k, k00kkk, kk0k00k, k0kkk0kk, kkk00kk0k, k0k0kk0, kkkkk0k0,$	
k0000kkk0, k000k00kk, k00kk0k00, k0k0kkk0k, kkkk00kk0, k0k0kk,	
kkkkk0k, k0000kkk, kk000k00k, k00kk0k0, kk0k0kkk0, kkkk00kk,	
k000k0k0k, k00kkkkk0, k0k0000kk, kkk000k00, k00kk0k, kk0k0kkk,	
k0kkkk00k, kk000k0k0, k00kkkkk, kk0k0000k, kkk0000k0, k00k00kk0,	63
k0kk0k0kk, kk0kkkk00, kk000k0k, k0k00kkkk, kkk0k0000, kkk000k,	
k00k00kk, kk0kk0k0k, kk0kkkk0, k0kk000k0, kk0k000kkk, kkk0k000,	
k00kkk000, k0k00k00k, kkk0k0k0, kk0kkkk, k0kk000k, kkk0k00kk, kkk0k00, kkk0k00kk, kkk0k00kk, kkk0k00, kkk0k00kk, kkk00kk, kkk0k00kk, kkk0k0kk, kkk0kk0kk, kkk0kk0kk, kkk0kk0kk, kkk0k0kk, kkk0kk0kk, kkk0kk0kk, kkk0kk0kkk, kkk0kkkk, kkk0kk0kk, k	
k00kkk00, kk0k00k00, kkk0kk0k, k00kk0kkk, k0k0kk000, kkkk0k00k,	
kkk0k0, k00kkk0, kk0k00k0, k0kkk0kk0, kk00kk0kk, k0k0kk00, kkkkk0k00	
$\{k0kkk, kkk00k, k00k0kk, kk0kkk0k, k0kk00kkk, kk0k0000, kkkkk00k, k0kk00kkk, kk0k0k000, kkkkk00k, k0kk0k0kk, kk0k0k00, kkkkk00k, k0kk00k0kk, kk0k0k0kk, kk0k0k00, kkkkk00k, k0kk00k0kk, kk0k0k0kk, kk0k0k00, kkkkk00k, k0kk00k0kk, kk0k0k0kk, kk0k0k00, kkkkk00k, k0kk00k0kk, kk0k0k0kk, kk0k0k0k, kk0k0k0k0$	
k0000k0kk, k000kkk00, k00k00k0k, k0kk0kkk0, kk0kk00kk, kk0k000,	
k0kkkkk00, kk0000k0k, k000kkk0, kk00k00k0, k0kk0kkk, kkk0kk00k,	
kk0k0k0, k0kkkkk0, kkk0000k0, k000kkk, kk00k00k, k0k0kk0kk,	
<i>kkkk</i> 0 <i>kk</i> 00, <i>kk</i> 0 <i>k</i> 0 <i>k</i> , <i>k</i> 0 <i>kkkkk</i> , <i>kkk</i> 0000 <i>k</i> , <i>k</i> 00 <i>k</i> 000 <i>kk</i> , <i>k</i> 0 <i>k</i> 00 <i>k</i> 00, <i>kk</i> 0 <i>k</i> 0 <i>k</i> 0 <i>k</i> ,	63
<i>kkkk0kk0</i> , <i>k000kk0k0</i> , <i>k00k0kkkk</i> , <i>k0kkk0000</i> , <i>kk00k000k</i> , <i>k0kk00k0</i> ,	
kkk0k0kk0, kkkk0kk, k000kk0k, kk00k0kkk, k0kkk000, kkk00k000, k0kk00k,	
<i>kkk</i> 0k0 <i>kk</i> , k00 <i>kkk</i> 0 <i>k</i> , k0k000 <i>kk</i> 0, <i>kkk</i> 00 <i>k</i> 0 <i>kk</i> , k0 <i>kk</i> 00, <i>kkk</i> 00 <i>k</i> 00,	
k00k0kk00, k0kkk0k0k, kk00kkkk0, k0k000kk, kkkk00k0k, k0kkk0,	
kkk00k0,k00k0kk0,kk0kkk0k0,kk00kkkkk,k0k00k0	<u> </u>

D_n -orbits	Length
n = 10	
{0}	1
$\{kk000kk, k0k00k0k, kkkk0kkkk, k000kk000k, k00k0k00k0, k0kkkk0kkk,$	
kk000kk000, k00k0k00k, kk0kkkk0kk, kk000kk00, k0k00k0k00,	15
kkk0kkkk0k, kk000kk0, k0k00k0k0, kkkk0kkkk0	
$\{k0k, kkkk, k000k, kk00kk, k0k0k0k, kkkkkkkk$	
k00000k00, kk0000kk00, k000k0k0k, kk00kkkkkk, k0k000000, kkkk000000,	
k00000k, kk0000kk, k0k000k0k, kkkk00kkkk, k0k0000, kkkk0000,	30
k000k0000, kk00kk0000, k0k0k000k, kkkkkk00kk, k0k00, kkkk00,	00
k000k00, kk00kk00, k0k0k00, kkkkkkkk00	
$\{k0k0, kkkk0, k000k0, kk00kk0, k0k0k0k0, kkkkkkk0, k0000000k0,$	
k000000kkk, k00000k000, k0000kk00k, k000k0k0k0, k000k0k0k, k00k0k0k0, k00kkkkkkk, k0k0000000,	
kkk000000k, k00000k0, kk0000kk0, k0k000k0k0, kkk000kkkk, k0k00000,	30
kkkk00000, k000k00000, k00kk0000k, k0k0k000k, kkkkk00kkk, k0k000,	00
kkkk000, k000k000, kk00kk000, k0k0k0k000, kkkkkkk00k}	
$\{kk0kk, k0kk0k, kkk0kkk, k00kk00k, kk0k0k0k, k0kkkkkk0k, kk00000kk0,$	
k0000k0kk, $kk000kkk0k$, $k00k00kk0$, $kk0kk0k0k0$, $kk0kkkkkk$, $k0k00000k0$,	
kk0k0000k0, kkk0000kkk, k00k00k0, k00kk0k0k0, kk0kk0kk0kkkk, kk0kk0000,	30
k0kk0k00000, kk0kkk000k, kk00k00k0, k0k0kk0k0k, kkk0kk0kk0kk, kk0kk000,	50
k0kk0k000, kkk0kkk00, k00kk00k00, k0k0kk0k, kkkkkk0kk0	
$\{k00kkk, kk0k00k, k0kkk0kk, kkk00k0k, k00k0k0k, k00k0k0kk, k00k0k0k, k00kk0k0, k00kk0k0, k00kk0k0k, k00k0k0k, k00k0k0k0k$	
kk0000k00k, k000kk0k0, kk00k0kkk0, k0kkk00kk, kkk00k0k0k0k	30
kkk0000k0, k00k000kk0, k0kk00k0kk, kk0k0kkk00, kkkk00k0k, k000k0kkkk,	30
k00kkk0000, k0k00k000k, kkk0kk00k0, kk0k0kkk, k0kkkk00k, kkk000k0kk, k000k0k0kk, k0k0kkk00k, kkk000k0k0kk, k000k00k0kk, k000k00k0kk, k000k00k0k0k0k	
k00kkk00, kk0k00k00, k0kkk0kk00, kk00kk0k0k, k0k0kkkk0, kkkkk000k0	
$\{kkk00k, k00k0kk, kk0kkk0k, k0kk00kkk, kkk0k0k00k, kkkkk0k0, k0000kkk0, kk0000kkk0, k0000kkk0, k00000kkk0, k0000kkk0, k00000kkk0, k0000kkk0, k0000kkk0, k0000kkk0, k0000kkk0, k0000kkk0, k0000kkk0, k0000kkk0, k0000kkk0, k0000kkk0, k00000kk0, k0000kk0, k00000kk0, k0000kk0, k0000kk0, k0000kk0, k0000kk0, k0000kk0, k00000kk0, k000000kk0, k000000kk0, k000000kk0, k000000kk0, k000000kk0, k000000kk0, k0000000kk0, k000000kk0, k0000000kk0, k000000kk0, k0000000kk0, k0000000kk0, k0000000kk0, k0000000kk0, k0000000kk0, k0000000kk0, k0000000kk0, k0000000kk0, k0000000kk0, k00000000$	
kk000k00k0, k00kk0kkk, kk0k0kk00k, kkkk0k0k0, k000kkkkk0, k00k0000kk,	20
k0kk000k00, kk0k00kk0k, kkk0k0kk0, k00kkkk0k0, k0k000kkkk, kkk00k0000, k0kk000kkkk, kkk00k0000, k0kk00kk0	30
k0kk000k, kkk0k00kk, k00kkk0k0k, k0k00kkkk0, kkk0k000kk, kkk00k00,	
k00k0kk00, kk0kk0k00, kk00kkk0k, k0k0k00kkk, kkkkk0k000	
$\{kk0kk0, k0kk0k0, kkk0kkk0, k00kk00k0, kk0k0k0k0$	
k00000kk0k, k0000k0kk0, k000kkk0kk, k00k00kk00, k0kk0k0kk,	20
<i>kk0kkkkk0,kk00000kk,k0k0000k0k,kkk0000kk0,k00k00</i>	30
k0kk0kkkkk, kk0kk00000, kk0k0000k, k0kkk000kk, kk00k00, k0kk0kk0k,	
kkk0kk0kkk, kk0kk000, k0kk0k000, kkk0kk000, kk00k00k,	
k0k0kk0kk,kkkkk0kk0k}	
$\{k00kkk0, kk0k00k0, k0kkk0kk0, kkk00kk0k0, k0k0kkkk, kkkkk000k, k0k0kk0k0, k0k0kkkk, kkkkk000k, k0k0kk0kk0, k0k0kk0kk0, k0k0kk0k0, k0k0k0k0$	
k0000k00kk, k000kk0k00, k00k0kkk0k, k0kkk00kk0, kk00k0k0kk,	
k0kkkkk00, kkk0000k00, k000kk0k, kk00k0kkk, k0k0kkk00k, kkkk00k0k0,	30
k0kkkkk, kkk0000k, k00k000kk, kk0kk00k0k, kk0k0kkkk0, k0kkkk00k0,	
kk000k0kkk, k00kkk000, kk0k00k000, kkk0kk00k, k00kk0kkk, k00kk0k0kk, k00kk0k0k0kk, k00kk0k0k0kk, k00kk0k0k0kk, k00kk0k0k0kk, k00kk0k0k0k0	
$k0k0kkkk00, kkkk000k0k\}$	1
$\{kkk00k0, k00k0kk0, kk0kkk0k0, k0kk00kkk0, kk0k0k0k0$	1
k0000kkk00, k000k00k0k, k00kk0kkk0, k0k0kk00kk, kkkk0k00, kkkkk0k,	
k0000kkk, kk000k00k, k0k00kk0kk, kkk0k0kk00, kkkk0k0k, k000kkkkk,	30
kk00k0000k, k0kk0000k0, kkk0k000kk0, kkk0k00kkk, k00kkkk0k, kk0k000kkk,	
$kkk00k000, k00k0kk000, k0kkk0k00k, kk00kkk0k0, k0k00kkkk, kkkk0k000k\}$	

As for n > 10 the orbits become too large to be written explicitly, we only give their number and cardinality.

Fact 4.3. All nontrivial D_n -orbits for $11 \leq n \leq 17$ are the following:

- 1. n = 11: twenty seven 341-element orbits,
- 2. n = 12: nine 3-element orbits and 198 orbits of cardinality 12 each,
- 3. n = 13: forty five 819-element orbits,
- 4. n = 14: eighty one 7-element orbits and 2592 orbits of cardinality 14 each,
- 5. n = 15: nine 3-element orbits, twenty seven 5-elements orbits and 9819 orbits of cardinality 15 each,
- 6. n = 16: no nontrivial orbits,

7. n = 17: twenty seven 85-element orbits and 2304 orbits of cardinality 255 each. \Box

Remark 4.4. Consider a number containing exactly two distinct digits -0 and some nonzero A. Since digits appear in bunches, we shall use the notation introduced in Section 2.2. So there are 4 possible forms of such numbers, that is

$$D_n(0_{k_1}A_{s_1}\dots 0_{k_t}A_{s_t}) = (0_{k_1-1}A_1)(0_{s_1-1}A_1)\dots (0_{k_t-1}A_1)(0_{s_t-1}A_1)$$
$$D_n(A_{s_1}0_{k_1}\dots A_{s_t}0_{k_t}) = (0_{s_1-1}A_1)(0_{k_1-1}A_1)\dots (0_{k_t-1}A_1)(0_{s_t-1}A_1)$$
$$D_n(0_{k_1}A_{s_1}\dots 0_{k_t}A_{s_t}0_{k_{t+1}}) = (0_{k_1-1}A_1)(0_{s_1-1}A_1)\dots (0_{k_t-1}A_1)(0_{s_t-1}A_1)0_{k_{t+1}}$$
$$D_n(A_{s_1}0_{k_1}\dots A_{s_t}0_{k_t}A_{s_{t+1}}) = (0_{s_1-1}A_1)(0_{k_1-1}A_1)\dots (0_{k_t-1}A_1)(0_{s_t-1}A_1)0_{s_{t+1}}$$

whence we always get an even number of appearances of A. That leads to a possibility that elements of this form appear in D_n -orbits. Note however that $D_n(A_n) = 0$ and $D_n(0_n) = 0$, so it can be untrue for even n (and it is actually for powers of 2, as follows from the above theorem). If we assume now that n is odd, then we always get at least one 0 whence at least one A, so we again obtain a number which is in one of the 4 forms.

Examination of numerical results for D_n -orbits leads to the following

Conjecture 3. Each element of a nontrivial D_n -orbit for $n \in \mathbb{N}$ is a number containing only two distinct digits – a nonzero digit $k \in \{1, 2, ..., 9\}$, which always has an even number of appearances, and 0.

Remark 4.5. We have considered one more example of general Kaprekar's transformation which is a generalization of D_n , namely $d_{id,\pi_{n,r}}$, where for every $r, n \in \mathbb{N}$, r < nwe have

$$\pi_{n,r}(k) = \begin{cases} k+r, & k = 1, 2, \dots, n-r, \\ k-n+r, & k = n-r+1, \dots, n, \end{cases}$$

It turned out that for r = 2 and odd n orbits of $d_{id,\pi_{n,2}}$ and D_n form the same sets, but elements in orbits appear in a different order (i.e. arise from different iterations). For instance, nontrivial orbits for $d_{id,\pi_{3,2}}$ are

$$\{k0k, 0kk, kk0\}, A = 1, 2, \dots, 9,$$

(compare to D_3 -orbits given in the table above) and nontrivial orbits for $d_{id,\pi_{5,2}}$ are

 $\{kkkk, k00k0, kk000, kk0kk, k0k00, kk0, kkkk0, k0k, k000k, k0kkk, k00k, kk00, kkk0k, k0k0, kk\}, k = 1, 2, \dots, 9$

(compare to D_5 -orbits given in the table above).

5. Further generalizations Kaprekar's transformations

All transformations we have discussed so far are of the form

$$S_{f,g}(\alpha) := \sum_{k=1}^{n} |s_{f(k)} - s_{g(k)}| |10^{n-k},$$

where f, g are some permutations on $\{1, \ldots, n\}$ and s_1, \ldots, s_n is a sequence of digits of α , either consecutive or nondecreasing. So the next step in generalizing could be considering the case when f, g are **any** functions. We only mention it as a remark as considering these transformations in details would exceed the scope of this paper.

One more idea is to introduce Kaprekar-style transformations in some other algebraic structures, like groups or rings. As the example we propose two transformations on symmetric groups S_n , $n \ge 2$. Recall that each permutation can be uniquely (up to the order) represented as a product of pairwise disjoint cycles. So let a permutation $\pi \in S_n$ be written as a product of pairwise disjoint cycles such that their lengths decreases and cycles of length 1 are omitted in this notation. Now, let max_{π} (resp. min_{π}) be a permutation nontrivial cycles of which have the same lengths as those in π and elements in these cycles are consecutive numbers in decreasing (resp. increasing) order starting with n (resp. 1). For example, if $\pi = (2, 4, 6, 8)(1, 3, 5) \in S_9$ then $max_{\pi} = (9, 8, 7, 6)(5, 4, 3)$ and $min_{\pi} = (1, 2, 3, 4)(5, 6, 7)$. Next, let $max_{supp(\pi)}$, $min_{supp(\pi)}$ be permutations defined analogously as max_{π} , min_{π} , respectively, but on the support of π only, that is on $supp(\pi) := \{k \in \mathbb{N} : k \leq n \text{ and } \pi(k) \neq k\}$. For example if $\pi = (2, 4, 6, 8)(1, 3, 5) \in S_9$ then $max_{supp(\pi)} = (8, 6, 5, 4)(3, 2, 1), min_{supp(\pi)} = (1, 2, 3, 4)(5, 6, 8)$. Note that this idea corresponds to ordering digits of numbers in case of classical Kaprekar's transformations. Now we define two Kaprekar-style transformations, namely for every permutation $\pi \in S_n$ we have

$$\mathcal{F}_n(\pi) = max_\pi \circ min_\pi, \qquad \mathcal{R}_n(\pi) = max_{supp(\pi)} \circ min_{supp(\pi)} \tag{10}$$

As the example consider $\pi = (1342)(657) \in S_7$. Then

$$\begin{aligned} \mathcal{F}_7(\pi) &= (7654)(321)(1234)(567) = (374), \\ \mathcal{F}_7^2(\pi) &= (765)(123), \\ \mathcal{F}_7^3(\pi) &= (765)(432)(123)(456) = (14763), \\ \mathcal{F}_7^4(\pi) &= (76543)(12345) = (12765), \end{aligned}$$

whence

$$\mathcal{F}_7^n(\pi) = (12765), \quad n \ge 4$$

and

$$\mathcal{R}_7(\pi) = (7654)(321)(1234)(567) = (374),$$

 $\mathcal{R}_7^2(\pi) = (743)(347) = \text{id.}$

Basing on the numerical calculations we performed we suspect the following is true:

Conjecture 4. For every natural n and each permutation $\pi \in S_n$ there exists a natural number $k = k(\pi)$ such that $\mathcal{R}_n^k(\pi) = \text{id.}$

Bibliography

- Calkin N.J., Stevens J.G., Thomas D.M.: A characterization for the length of cycles of the N-number game. Fibonacci Quart. 43, no. 1 (2005), 53–59.
- Caragiu M., Zaharescu A., Zaki M.: On Ducci sequences with algebraic numbers. Fibonacci Quart. 49, no. 1 (2011), 24–40.
- Chamberlain M., Thomas D.M.: Open problems and conjectures the N-number Ducci game. J. Difference Equ. Appl. 10, no. 3 (2004), 339–342.
- Ciamberlini C., Marengoni A.: Su una interessante curiosita numerica. Periodiche di Matematiche 17 (1937), 25–30.
- 5. Guy R.K.: Conway's RATS and other reversals. Amer. Math. Monthly 96, no. 5 (1989), 425-428.
- Hanslik H., Hetmaniok E., Pleszczyński M., Sobstyl I., Wituła R.: On the orbits of Kaprekar's transformations by discussing the numerical results. In: Selected Problems on Experimental Mathematics, R. Wituła, B. Bajorska-Harapińska, E. Hetmaniok, D. Słota, T. Trawiński (eds.). Wyd. Pol. Śl., Gliwice 2017, 259–273.
- Hanslik H., Hetmaniok E., Pleszczyński M., Sobstyl I., Wituła R.: Orbits of the Kaprekar's transformations – some introductory facts. Zeszyty Nauk. Pol. Śl. Mat. Stos. 5 (2015), 5–34.
- Hasse H., Prichett G.D.: The determination of all four-digit Kaprekars constants. J. Reine Angew. Math. 299/300 (1978), 113–124.
- Hetmaniok E., Pleszczyński M., Sobstyl I., Wituła R.: Kaprekar's transformations. Pt. 1, Theoretical discussion. Proc. Fed. Conf. Comp. Sc. Inf. Sys. (FedCSIS) 5 (2015), 687–692.
- Hetmaniok E., Pleszczyński M., Sobstyl I., Wituła R.: Kaprekar's transformations. Pt. 2, Numerical results and intriguing corollaries. Proc. Fed. Conf. Comp. Sc. Inf. Sys. (FedCSIS) 6 (2015), 97–104.
- Kaprekar D.R.: An interesting property of the number 6174. Scripta Mathematica 21 (1955), 304.
- 12. Kaprekar D.R.: Another solitaire game. Scripta Mathematica 15 (1949), 244–245.
- 13. Kurlyandchik L.: Gold Fishes in the Ocean of Mathematics. Oficyna Wydawnicza Tutor, Toruń 2005 (in Polish).
- 14. Lagarias J.C.: The 3x + 1 problem and its generalizations. Amer. Math. Monthly **92**, no. 1 (1985), 3–23.
- 15. Lotan M.: A problem in difference sets. Amer. Math. Monthly 56, no. 8 (1949), 535–541.
- Sierpiński W.: Sur les itérations de certaines fonctions numériques. Rend. Circ. Mat. Palermo 13 (1964), 257–262.
- Trigg C.W.: Kaprekar's routine with five-digit integers. Math. Magazine 45, no. 3 (1972), 121– 129.